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ESTIMATING THE RANGE OF APPLICABILITY OF THE
HYPERBOLIC THERMAL CONDUCTIVITY EQUATION

K. V. Lakusta and Yu. A, Timofeev . UDC 536.24.02

A generalized thermal conductivity equation is considered. The geometric dimensions of regions
in which temperature fields may be described by hyperbolic or parabolic thermal conductivity
equations are estimated.

In the last decade wide use has been made of the hyperbolic thermal conductivity equation

T, T (x, ©) n aT (x, 7) —a T (x, 7) @
ot ot ox?
for description of high-intensity processes. In this equation, proposed in [1], 7y is the relaxation time; a,
thermal diffusivity coefficient; W = vVa/7., A,c, p, rate of propagation of heat, the thermal conductivity, the
specific heat, and density.

In a layer of material of thickness ! we will consider the mathematical model of the thermal conductivity
process described by Eq. (1) with initial conditions

aT (x, 0)

o = @z (%) (2

T (x, 0) = @1 (x),

and boundary conditions
a TEDL D T (= DL 9= 0, (0, = 1, 2. &)
The coefficients @j,, ¢, take on the values 0 and 1, depending upon the form of the boundary conditions,

Following [2], we construct the solution of the system (1)-(3) in the form

T 9= EAn (@) Xo () + ¥ (x, 7). 4
n=1
An auxiliary, sufficiently smooth function ¥{(x, 7) which reduces inhomogeneous conditions to homoge-
neous is constructed in a manner such that
' O¥ (x, 0) _

¥ (x, 0) = @u(x), o

(Pz(x),

o, PTE =1L D
Ox

F((—1I, 9=0, i=1,2,

F(=Da¥ (-1 )=,
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where

¥, 1) ¥ T e oY (x, T)
dx? dv T ew

Fix,7)=a

The functions {Xy (x)};f:‘ are normalized eigenfunctions of the following spectral problem:
d2X ¢x) aX((i—1N9
pX (x) =0, —_—
EET X (@ =0,
The coefficients Ap(7) are defined with the aid of the infinite system
T d?A, ('c) dA, (1)
"o dv

A,,(O):%—(—OLL-O, n=1,2, ..., (6)

(= DapX(—D) =0, i=1,2 (5)

“+ HnaA (T) =gy (T)

4o (1) = SIF(x, 1) X, (x) dx,
* 0

where py, are eigenfunctions of problem (5).

We write the characteristic equation for Eq. (6):

V2T + ety =0, ¥/
the solution of which has the form
148 1=
WET T, 0 2T T T gy
8, = 1 —4dplat, = | — 4pja?W-2. (8

Using [3], we obtain the solution of system (6):

Gn (8) 872 {e" " — "N ds for 8,0

|
h)
T8 _ .
An (T)= » S qn( {— 21:" }ds for 671. =0, (9}

. 172 (o
K qn(s)2[6n{1/2sm-i§’i‘—7(r——§)—ds for §, < 0.
T

r

b

Then, in general form, we can write the solution of Eqs. (1)-(3) as
T(x, ©) = Rp(x, 1)+ Ry(x, 7+ Ryfx, ©) + Rum, (x, O + ¥ (x, 7),

where
ne—1

Rp(x, T)_EA (t) X, (x) for alln for which &, >0,

n=1

Ry (x 1) = Ay, (1) Xu, (X) if there exists an 77g such that &,, = 0,

Ry(x, ©) = 2 A, (V) X, (%) for all n < my for which §&,<<O.
. n=nytl
We will term Rp, Ry, Rp the parabolic, transitional, and hyperbohc components of the solution of Egs. (1)-
(3), while

Rm, {x, T) = i A4, (1) Xy (%)

n==my4-1
is the residue of the series, with the number m; being determined from the condition

S (4, (1) X ()] < 20

n=mgy+1
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for all 7 € [0, ), where &, is an arbitrarily small positive number, Since g, — ® asn — «, Rmo(x, 7) is also
of a hyperbolic character, ‘

We will use Eq. (8) to determine the criterion for applicability of the hyperbolic equation for description
of the thermal state of a layer of thickness I.

Let 64 > 0 for all n. In this case
17(72>4p,,21a2 forall n=1,2 ..., (10)

and since Ky — ©as n = © obviously Eq. (10) is valid at W = », Therefore, condition (10) is satisfied within
the framework of the phenomenological theory of thermal conductivity, In this case ¥, = —= and v, = —-pia.

Let 0y >0 for all n =m,. Then
W2 > 4y, o> (11

If the rate of heat propagation in the layer satisfies Eq. {11), then assuming error in g, for all 7 € [0, <),
the process may be described by the classical thermal conductivity equation,

Evaluation of Eq. (11) also shows that for any large, but finite heat propagation rate, the hyperbolic
component will always occur in the solution of Eqs, (1)-(3). Consequently, the question of the applicability of
the classical thermal conductivity equation must be resolved with consideration of the accuracy required in the
analysis of the thermal process,

Let 6y < 0 for all n, Then
W2 < dpiaz. (12)
If the heat propagation rate satisfies condition (12), then to calculate the temperature field in the layer it
is necessary to use the hyperbolic equation. Then Ry = Ry = 0.

For boundary problem I (II) p =nn/l, and from Eq. (12) we have an estimate of the geometric dimensions
of the region

a
<< — -2n,
w

wherein the thermal process is described by the hyperbolic equation,

For metals, e.g., 0 <I<c- 10"% m, where the constant ¢ depends on the type of metal, For aluminum,
copper, steel, and iron it equals 0.190, 0,243, 0.068, 0,087, respectively. The width of the region for estab-
lishment of thermodynamic equilibrium increases markedly for porous bodies. Thus, for cork, ! <0,177-
10" %m,

Equation (10) indicates that if the process is described by a parabolic equation (W = =), then the width of
the region will coincide with the entire layer.

From Eq, (11) it follows that

1> 2nmya

= liy

i.e,, to an accuracy of g;the classic thermal conductivity equation can be employed for a layer, the geometric
dimensions of which are not smaller than {,, If! <[, the hyperbolic equation must be used to describe ther-
mal processes, ’ :

For the case of boundary problem (1)-(3) the eigennumbers g, of Eq. (5) are defined with the transcen-
dental equation

G120 ) (un (042 -+ 0tzo) )~1'

cot u,l = (Mi‘— Y Py

The transitional component of the problem appears if there exists a number n, such that W = 2y @, i.e.,
if W satisfies the condition

wi A w Qisllpy 20 (13)

N e e e

2a OyOay 20 GOy AW ‘
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Proceeding as in the case of boundary problem I, we obtain: if W ==, then the process is essentially
parabolic; if W > Wmo , Where Wm0 -~ m, are the roots (in order of increasing magnitude) of Eq. (13}, then to
an accuracy of € the process may be considered parabolic; if W < W, where W, = min Wy, the process is
essentially hyperbolic,

We will now determine values of ! for the given boundary problem, Since the departure of the eigen-
numbers of the present problem from those of the first boundary problem can be evaluated in the following
manner:

pe) —pe" = o,

where

[0, i for  pp <A {ago)!/?,
2l
an€ { ©

I 11 -
[2_1 ’ T} for ”n?K Houtiaa) /2

then, using Eq. (11), we obtain the inequality
’ W 1
{>> aim, (—— — O, ) , (14}
2a

from which it is evident that the classical thermal conductivity equation may be employed for a layer, the
dimensions of which are not smaller than the quantity

W S
lg = mum, (_—+Uma) ’
2a

with the error thus introduced not exceeding the value of éo . If the dimensions of the layer are less than {;,
the hyperbolic equation must be used to study the thermal state of the layer to an accuracy of g

Let & = min (e(()I), E(Om)) and my = my(€). In this case, the estimates obtained indicate that the minimum

possible {for an accuracy of € in the classical equation) dimension I, for the problem considered is smaller
than the minimum possible layer dimension [ for boundary problem I by the amount

2na 2406,

(h=4—13= m s
0] 1 3 W OW—}—QaGmD

while the value of the deviation depends on the heat-exchange conditions on the layer surface and lies within the
limits

v; Mg'.\ 1+ ﬂ)—l for l'tr(?f:l)< (“120522)1/2
W L1077 A

2nam Wiy—t 2nam, Wiy—1]
S (! 22 _ e 1~ 2=
(e [ w ( t zm) w {\ ' 2:rca) J

Clyltns) /2
o w2 =

From inequality (12) we obtain an estimate of the region size for the given boundary problem, where the
thermal process in the entire layer is described by a hyperbolic equation

h<n[ Y 1al, (15)
2a i

where

[0’ %_] for BUD < (cns) 12 A7H,
S ’

£ 5 g n

(5 T ] o > (2

From Eqgs. (14), (15) it follows that in justifying the applicability of either the classical or the hyperbolic

equation it is necessary to consider not only the heat propagation rate, but also the character of the interaction
between the body under study and the surrounding medium,
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